$\beta 2$ -microglobulin - a trigger for NLRP3 inflammasome activation in tumor-associated macrophages promoting multiple myeloma cell progression

P-02.4-23

C. Visentin *^I, D. Hofbauer *^{II}, D. Mougiakakos^{II}, L. Broggini^I, M. Zaiss^{II}, M. Büttner-Herold^{III}, F. Neumann^{IV}, S. Bisht^V, J. Nolting^V, R. Zeiser^{II}, S. Hamarsheh^{II}, M. Eberhardt^{II}, C.M.G. De Luca^{VI}, F. Moda^{VI}, M. Böttcher^{II}, K. Bitterer^{II}, S. Völkl^{II}, A. Mackensen^{II}, S. Ricagno^I, H. Bruns^{II}

^IUniversity of Milan, Milan, Italy, ^{II}University Hospital Erlangen, Germany, ^{III}University of Saarland, Homburg (Saar), Germany, ^{IV}University Hospital Bonn, Bonn, Germany, ^VUniversity of Freiburg, Germany, ^VLaboratory of Clinical Pathology, Foundation IRCCS Istituto Neurologico Carlo Besta, Milan, Italy

Pro-inflammatory macrophages, as significant constituents of the tumor microenvironment in multiple Myeloma (MM), are key promoters of disease progression, bone destruction, and immune-impairment. Consequently, the identification of endogenous mediators of these inflammatory processes open novel therapeutic avenues against major pathological features of MM. We identify beta-2-microglobulin (β 2m) as an important driver in the initiation of inflammation in myeloma-associated macrophages (MAMs). Lysosomal accumulation of phagocytosed β 2m in patient derived MAMs promoted β 2m amyloid aggregation, resulting in lysosomal rupture and ultimately in the production of active interleukin (IL)-1b and IL-18. Interestingly, this process strictly depended on the activation of the NALP3 inflammasome after β 2m accumulation. Moreover, depletion or silencing of β 2m in MM cells abrogated inflammasome activation in a murine MM model. Finally, the specific disruption of NLRP3 or IL-18 diminished tumor growth and osteolytic bone destruction normally promoted by β 2m-induced inflammasome signaling. Taken together our results provide novel mechanistic evidence for β 2m's role as an NALP3 inflammasome activator during MM pathogenesis. Moreover, inhibition of NALP3 highlights one potential novel therapeutic approach to combat this severe malignancy.

^{*} The authors marked with an asterisk equally contributed to the work.